– Medial EarlySign unveils the first clinical implementation of its AI-based solution to identify unvaccinated individuals at high-risk of developing serious flu-related complications.
– Developed in collaboration with leading Israeli HMO Maccabi Healthcare Services, the implementation utilizes existing EHR data to identify and stratify patients at high risk.
Medial EarlySign, a Israeli-based provider of machine learning-based solutions to aid in the early detection and prevention of high-burden diseases has announced its flu complications algorithm has been selected by Maccabi Healthcare Services as part of the Israeli healthcare organization’s integrated strategy to enhance its flu vaccination campaign.
Why It Matters
Given the increasing number of flu-related deaths – and the expectation for this year’s flu season to take a heavier toll than usual, the program is designed to facilitate more effective targeted outreach to increase vaccinations for those in most need. “According to the World Health Organization, flu kills between 250,000 and 500,000 people globally every year,” said Prof. Varda Shalev, director of KSM Kahn-Sagol-Maccabi Research and Innovation Institute, founded by Maccabi Healthcare Services. “Due to the late arrival of influenza vaccines in Israel this year, the time we have to vaccinate patients this flu season ─ especially those at high risk for developing flu-related complications ─ is much shorter than usual. H1N1 flu could take a heavier toll this season, particularly on people at high risk for flu complications.”
EarlySign’s Investigational Algorithm FlagThe EarlySign investigational algorithm flags individuals at high risk for developing flu-related complications and is being used as part of a clinical study undertaken by Maccabi and EarlySign. EarlySign’s machine learning-based tool applies advanced algorithms to ordinary patient data, collected over the course of routine care.
The flu complications algorithm uses this EHR data to identify and stratify unvaccinated individuals at high risk of developing flu-related complications, often requiring hospitalization, Maccabi Healthcare Services is Israel’s second largest HMO, covering approximately 2.3 million patients, operating 5 regional centers, including hundreds of branches and clinics throughout the country.
Maccabi’s clinical study using EarlySign’s flu complications algorithm supports the Israeli HMO’s commitment to investigating and implementing machine learning-based solutions to improve the health of populations. The program follows Maccabi’s initial collaboration with EarlySign in 2016, to identify individuals at high risk of colorectal cancer who are non-compliant with screening guidelines.
“We are delighted to extend our partnership with Maccabi in this clinical study to apply advanced machine learning solutions to help alleviate the human and financial cost of high-burden diseases,” said Dr. Jeremy Orr, CEO of EarlySign. “This signifies another important step towards our ultimate goal – to help improve care and long-term survival rates of people at greatest risk through early identification and intervention.”