• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Life Sciences
  • Investments
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage

Study: AI-Powered Solution Achieves High Accuracy for Detecting COVID-19 on CT

by Fred Pennic 03/24/2020 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

What You Should Know:

– New RADLogics research that validates the performance of an AI-powered CT image analysis solution that is designed to automatically and accurately detect COVID-19 (Coronavirus) and quantify the disease burden in affected patients.

– The study found that the CT image analysis algorithm – developed from multiple international datasets – was able to differentiate 157 patients with and without COVID-19 with a 0.996 AUC (plus, 98.2 percent sensitivity and 92.2 percent specificity).

– Although it is not recommended as a first-line test, non-contrast thoracic CT has been shown to be an effective tool in the detection, quantification, and follow-up of COVID-19.


RADLogics announced today new research that validates the performance of an AI-powered CT image analysis solution that is designed to automatically and accurately detect COVID-19 (Coronavirus) and quantify the disease burden in affected patients. To meet the growing worldwide pandemic, RADLogics also announced that it has rapidly deployed this new CT image analysis algorithm, which helps classify results for patients with COVID-19 per thoracic CT studies utilizing deep-learning image analysis.

Study Background

The study, led by Professor Hayit Greenspan from Tel Aviv University and RADLogics, in collaboration with Dr. Eliot Siegel of the University of Maryland School of Medicine in Baltimore, MD; and Dr. Adam Bernheim of the Icahn School of Medicine at Mount Sinai in New York, NY; found that the CT image analysis algorithm – developed from multiple international datasets – was able to differentiate 157 patients with and without COVID-19 with a 0.996 AUC (plus, 98.2 percent sensitivity and 92.2 percent specificity).

Analyzing Large Numbers of CT Studies for COVID-19

Although it is not recommended as a first-line test, non-contrast thoracic CT has been shown to be an effective tool in the detection, quantification, and follow-up of COVID-19. In addition to detecting and quantifying disease burden, RADLogics’ image analysis further outputs a suggested “Corona Score,” which measures the percentage of lung volume that is infected by the disease.

A consistent and reproducible method for rapidly screening and evaluating high volumes of thoracic CT imaging studies can assist healthcare systems through this pandemic by augmenting radiologists and acute care teams that could be overwhelmed with patients. Additionally, with a greater volume of patients who must be screened for coronavirus, earlier and more rapid detection of positive cases can help improve both the treatment of patients and containment of virus spread.

“This study validates our novel solution, which has been widely studied via multiple international datasets and a range of retrospective experiments to analyze the performance over time,” added Becker. “The conclusion was clear: our rapidly-developed AI-based image analysis can achieve high accuracy in detection of coronavirus as well as quantification and tracking of disease burden.”

Results of this study are available on https://arxiv.org/abs/2003.05037, and it has been submitted to the Radiology Society of North America (RSNA) for review and potential publication in Radiology: Artificial Intelligence. RADLogics is also expanding the initial study to a larger population.

To meet the growing worldwide pandemic, RADLogics also announced that it has rapidly deployed this new CT image analysis algorithm in China, Russia and Italy, and the company is rapidly scaling in other countries in response to the strong demand.

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: AI, Artificial Intelligence, care teams, Coronavirus (COVID-19), Diagnostic Imaging, lung, MD, Mount Sinai, radiology

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

2026 Predictions & Trends

Healthcare 2026 Forecast: Executives on AI Survival, Financial Reckoning, and the End of Point Solutions

2026 Healthcare Executive Predictions: Why the AI “Pilot Era” Is Officially Over

Most-Read

OpenAI Debuts ChatGPT Health: A ‘Digital Front Door’ That Connects Medical Records to Agentic AI

OpenAI Debuts ChatGPT Health: A ‘Digital Front Door’ That Connects Medical Records to Agentic AI

From Genes to Hackers: The Hidden Cybersecurity Risks in Life Sciences

From Genes to Hackers: The Hidden Cybersecurity Risks in Life Sciences

Utah Becomes First State to Approve AI System for Prescription Renewals

Utah Becomes First State to Approve AI System for Prescription Renewals

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

KLAS Report: Why Hospitals Are Choosing Efficiency Over 'Agentic' AI Hype in 2025

KLAS Report: Why Hospitals Are Choosing Efficiency Over ‘Agentic’ AI Hype in 2025

Advanced Primary Care 2026: Top 6 Investments for Health Systems According to Harvard Medical School

Advanced Primary Care 2026: Top 6 Investments for Health Systems According to Harvard Medical School

AI Nutrition Labels: The Key to Provider Adoption and Patient Trust?

AI Nutrition Labels: The Key to Provider Adoption and Patient Trust?

Kristen Hartsell, VP of Clinical Services, RedSail Technologies

The Pharmacy Closures Crisis: How Independent Pharmacies Are Fixing Pharmacy Deserts

HHS Launches 'OneHHS' AI Strategy to Integrate AI Across CDC, CMS, and FDA for Efficiency and Public Trust

HHS Launches ‘OneHHS’ AI Strategy to Integrate AI Across CDC, CMS, and FDA for Efficiency and Public Trust

From Overwhelmed to Optimized: How AI Agents Address Staffing Challenges and Burnout in Healthcare

From Overwhelmed to Optimized: How AI Agents Address Staffing Challenges and Burnout in Healthcare

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Op-Ed Submission Guidelines
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2026. HIT Consultant Media. All Rights Reserved. Privacy Policy |