• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage
  • Life Sciences
  • Research

Mount Sinai Researchers Develop AI Platform to Detect Neurodegenerative Diseases

by Fred Pennic 03/04/2019 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Mount Sinai Researchers Develop AI Platform to Detect Neurodegenerative Diseases

Mount Sinai researchers have developed an artificial intelligence platform to detect a range of neurodegenerative disease in human brain tissue samples, including Alzheimer’s disease and chronic traumatic encephalopathy, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published in the Nature medical journal Laboratory Investigation. Their discovery will help scientists develop targeted biomarkers and therapeutics, resulting in a more accurate diagnosis of complex brain diseases that improve patient outcomes. 
 
Research Abstract

The buildup of abnormal tau proteins in the brain in neurofibrillary tangles is a feature of Alzheimer’s disease, but it also accumulates in other neurodegenerative diseases, such as chronic traumatic encephalopathy and additional age-related conditions. Accurate diagnosis of neurodegenerative diseases is challenging and requires a highly-trained specialist.  

Researchers at the Center for Computational and Systems Pathology at Mount Sinai developed and used the Precise Informatics Platform to apply powerful machine learning approaches to digitized microscopic slides prepared using tissue samples from patients with a spectrum of neurodegenerative diseases.  Applying deep learning, these images were used to create a convolutional neural network capable of identifying neurofibrillary tangles with a high degree of accuracy directly from digitized images.

“Utilizing artificial intelligence has great potential to improve our ability to detect and quantify neurodegenerative diseases, representing a major advance over existing labor-intensive and poorly reproducible approaches,” said lead investigator John Crary, MD, Ph.D., Professor of Pathology and Neuroscience at the Icahn School of Medicine at Mount Sinai. “Ultimately, this project will lead to more efficient and accurate diagnosis of neurodegenerative diseases.”

Framework for Evaluating Deep Learning Algorithms in Neuropathology

This is the first framework available for evaluating deep learning algorithms using large-scale image data in neuropathology. The Precise Informatics Platform allows for data management, visual exploration, object outlining, multi-user review, and evaluation of deep learning algorithm results. 

Researchers at the Center for Computational and Systems Pathology at Mount Sinai have used use advanced computer science and mathematical techniques coupled with cutting-edge microscope technology, computer vision, and artificial intelligence to more accurately classify a broad array of diseases. The research was supported by grants from the Department of Defense, the National Institutes of Health, Alzheimer’s Association and the Rainwater Charitable Foundation.

“Mount Sinai is the largest academic pathology department in the country and processes more than 80 million tests a year, which offers researchers access to a broad set of data that can be used to improve testing and diagnostics, ultimately leading to better diagnosis and patient outcomes,” said author Carlos Cordon-Cardo, MD, PhD, Chair of the Department of Pathology at the Mount Sinai Health System and Professor of Pathology, Genetics and Genomic Sciences, and Oncological Sciences at the Icahn School of Medicine.  

Boston University School of Medicine, VA Boston Healthcare System, and UT Southwestern Medical Center contributed to this study.

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Artificial Intelligence, Artificial Intelligence (AI) Software Platform

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

2025 EMR Software Pricing Guide

2025 EMR Software Pricing Guide

Featured Interview

Paradigm Shift in Diabetes Care with Studio Clinics: Q&A with Reach7 Founder Chun Yong

Most-Read

Medtronic to Separate Diabetes Business into New Standalone Company

Medtronic to Separate Diabetes Business into New Standalone Company

White House, IBM Partner to Fight COVID-19 Using Supercomputers

HHS Sets Pricing Targets for Trump’s EO on Most-Favored-Nation Drug Pricing

23andMe to Mine Genetic Data for Drug Discovery

Regeneron to Acquire Key 23andMe Assets for $256M, Pledges Continuity of Consumer Genome Services

CureIS Healthcare Sues Epic: Alleges Anti-Competitive Practices & Trade Secret Theft

The Evolving Role of Physician Advisors: Bridging the Gap Between Clinicians and Administrators

The Evolving Physician Advisor: From UM to Value-Based Care & AI

UnitedHealth Group Names Stephen Hemsley CEO as Andrew Witty Steps Down

UnitedHealth CEO Andrew Witty Steps Down, Stephen Hemsley Returns as CEO

Omada Health Files for IPO

Omada Health Files for IPO

Blue Cross Blue Shield of Massachusetts Launches "CloseKnit" Virtual-First Primary Care Option

Blue Cross Blue Shield of Massachusetts Launches “CloseKnit” Virtual-First Primary Care Option

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

2019 MedTech Breakthrough Award Category Winners Announced

MedTech Breakthrough Announces 2025 MedTech Breakthrough Award Winners

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |