• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage
  • Life Sciences
  • Research

Artificial Intelligence in Healthcare – Do the Benefits Outweigh the Challenges?

by Jeffrey Hoffmeister, Medical Director at iCAD 04/16/2018 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Artificial Intelligence Applied AI AI in Healthcare AI Software Platform Artificial Inteligence in Healthcare

As healthcare professionals, it seems we can’t escape the buzz and hype of artificial intelligence (AI) today. However, unlike other industries, healthcare’s adoption of AI is still in its infancy, in part, due to many providers still updating their tools and processes for the digital age. According to an Accenture analysis, growth in the AI health market is expected to reach $6.6 billion by 2021 and key clinical health AI applications can potentially create $150 billion in annual savings for the US healthcare economy by 2026.

AI provides industry players with a unique opportunity to not only offer tools and insights that can vastly improve patient care, but that also improve their bottom line. However, despite all the benefits and advantages of AI that we hear about, some remain skeptical and hesitant to jump on board, and quite frankly, are concerned about the challenges of AI in healthcare and just how much it will impact the industry.

Addressing and Overcoming AI Concerns

One concern among some healthcare providers and professionals is related to AI’s data collection and accuracy, as we are keenly aware that AI is only as good as the data it collects. Not to mention, AI must be implemented correctly, in order to reach its full potential. The concern here is that since AI is built on deep learning, a technique in which computers learn through example and work to better understand and process complex forms of data, there is no real way to determine its inner workings – so providers have to rely on trust. Some providers on the other side of the fence, however, argue that AI is actually much faster and more accurate than humans.  

Other AI fears are related to providers losing their jobs, especially radiologists. However, radiologists actually have more job duties and responsibilities than what they are utilizing AI for, and many argue that AI solutions are simply just a supplement to their workflow. Embracing the technology which supports a patient’s outcome is the benefit.

Related: Why Artificial Intelligence Could Fail Healthcare Providers in 2018

AI’s Aim to Improve Patients Lives

In the medical field, AI has the potential to diagnose diseases and illnesses through deep learning. According to Breastcancer.org, about one in eight U.S. women will develop invasive breast cancer during her lifetime; however, two-thirds of women have the potential to be saved through early detection and progressive treatments. In response, many medical facilities are turning to Digital Breast Tomosynthesis (DBT) technology solutions as their preferred method for screening and diagnostic mammography in order to do just that – detect and diagnose women with early-stage breast cancer.

While there are many advantages to utilizing DBT, there are also some considerable challenges for radiologists. For example, detection of breast cancer using DBT involves interpretation of massive data sets, which can be time consuming and daunting for radiologists. A typical 2D digital mammography exam (once considered the gold standard for detection of breast cancer) produces four images, while a 3D mammogram – or DBT – can produce hundreds of images. While DBT provides greater clarity and detail and can improve breast cancer detection, radiologists are finding that they must spend significantly more time reviewing and interpreting each exam. However, with innovative technologies available today, radiologists can leverage these AI and deep learning tools to help reduce their DBT interpretation time and improve reading workflow, as these solutions automatically highlight areas that might be concerning. These capabilities are imperative as we continue to learn more about the increase in radiologist burnout.

While there is much more to be understood about AI in healthcare and medical imaging, one thing is for sure – AI is no doubt fundamentally changing the way radiologists and other healthcare providers do their jobs. To overcome the fears and concerns associated with AI, it’s imperative providers work to implement these new, innovative technologies effectively by first carefully considering and researching the right solution. Then, providers should invest time considering and understanding how their system is capturing and collecting data in order to analyze it and check for errors. As the healthcare industry as a whole continues to turn to a value-based care model, it’s easy to believe that providers who utilize and fully understand the unique capabilities of AI solutions will perform above the rest.

 Jeffrey Hoffmeister is the VP, medical director at iCAD, Jeffrey has participated in developing mammographic AI solutions for 25 years. He has provided clinical insight to engineering and marketing teams, and managed the design and implementation of clinical studies for FDA approval of mammographic AI products, from iCAD’s first mammography CAD product, SecondLook, in 2002 to iCAD’s most recent digital breast tomosynthesis AI solution, PowerLook Tomo Detection.

Related: Can Artificial Intelligence Improve Patient Engagement 

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Artificial Intelligence, Artificial Intelligence (AI) Software Platform, Artificial Intelligence in Healthcare, Machine Learning

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

2025 EMR Software Pricing Guide

2025 EMR Software Pricing Guide

Featured Interview

Kinetik CEO Sufian Chowdhury on Fighting NEMT Fraud & Waste

Most-Read

Blue Cross Blue Shield of Massachusetts Launches "CloseKnit" Virtual-First Primary Care Option

Blue Cross Blue Shield of Massachusetts Launches “CloseKnit” Virtual-First Primary Care Option

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

2019 MedTech Breakthrough Award Category Winners Announced

MedTech Breakthrough Announces 2025 MedTech Breakthrough Award Winners

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

KLAS: Epic Dominates 2024 EHR Market Share Amid Focus on Vendor Partnership; Oracle Health Sees Losses Despite Tech Advances

KLAS: Epic Dominates 2024 EHR Market Share Amid Focus on Vendor Partnership; Oracle Health Sees Losses Despite Tech Advances

'Cranky Index' Reveals EHR Alert Frustration Peaks Midweek, Highest Among Admin Staff

‘Cranky Index’ Reveals EHR Alert Frustration Peaks Midweek, Highest Among Admin Staff

Madison Dearborn Partners to Acquire Significant Stake in NextGen Healthcare

Madison Dearborn Partners to Acquire Significant Stake in NextGen Healthcare

Wandercraft Begins Clinical Trials for Physical AI-Powered Personal Exoskeleton

Wandercraft Begins Clinical Trials for Physical AI-Powered Personal Exoskeleton

Chipiron Secures $17M to Transform MRI Access with Portable Scanner

Chipiron Secures $17M to Transform MRI Access with Portable Scanner

Abbott to Integrate FreeStyle Libre Glucose Data with Epic EHR

Abbott to Integrate FreeStyle Libre Glucose Data with Epic EHR

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |