• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage
  • Life Sciences
  • Research

Mount Sinai, Sema4 Researchers Develop Method for Microbiome Analysis

by HITC Staff 12/11/2017 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Mount Sinai, Sema4 Researchers Develop Method for Microbiome Analysis

Scientists from the Icahn School of Medicine at Mount Sinai, Sema4, and collaborating institutions New York University and the University of Florida today published a report detailing their new, more accurate method for identifying individual microbial species and strains in a community. This technique has important implications for microbiome analysis, with potential long-term applications for clinical care. The paper came out today in Nature Biotechnology.

Microbiomes are communities of bacteria, viruses, and other microbes that can be found everywhere from the surfaces of keyboards and cell phones to environments on and within us, such as our mouths or intestines. Disruption of the natural microbiome has been implicated in health conditions including infectious diseases, cancers, and complex disorders such as Crohn’s disease, ulcerative colitis, and diabetes, among many others. Successful analysis of microbiomes depends on the ability to zoom in on these communities and identify the individual species and strains living within them.

To date, most techniques for identifying microbial members of these groups provide insufficient resolution. For example, a species might only be classified as part of its broader genetic family, rather than uniquely identified on its own. Existing methods are also not effective in the characterization of an important class of genetic materials that can shuttle between different bacterial species, known as mobile genetic elements.

In this new work, scientists used Single Molecule, Real-Time Sequencing technology and novel computational tools to classify microbes for the first time by analyzing both their genetic code and their methylation patterns, a second DNA code that regulates gene activity. This more comprehensive approach using long-read sequencing proved more precise than industry-standard protocols such as 16S sequencing or short-read sequencing, correcting errors and incomplete results in microbe identification generated by those methods. Importantly, the method provides a new way to link mobile genetic elements to their bacterial hosts, allowing scientists to more accurately predict the virulence, antibiotic resistance, and other biologically and clinically critical traits of individual bacterial species and strains.

“The biomedical community has long needed a microbiome analysis method capable of resolving individual species and strains with high resolution,” said Gang Fang, PhD, Assistant Professor of Genetics and Genomic Sciences at Mount Sinai, and senior author of the paper in a statement. “We found that DNA methylation patterns can be exploited as highly informative natural barcodes to help discriminate microbial species from each other, help associate mobile genetic elements to their host-genomes and achieve more precise microbiome analysis.”

In pilot projects using both synthetic and real-world microbiome samples, scientists were able to distinguish between even closely related species and strains of bacteria. They used methylation patterns to link related DNA sequence data, providing more holistic information about individual organisms. The team validated the method in low- to medium-complexity microbial communities, and is currently developing more advanced technologies to effectively resolve high-complexity communities such as environmental microbiomes.

“This project demonstrates the sophistication and power of analyzing many types of data together to yield insights that are not possible with more simplistic approaches,” said Eric Schadt, PhD, Sema4 CEO, Dean for Precision Medicine at Mount Sinai, and a co-author of the paper in a statement. “Biology is complex, and our analyses must accurately represent that complexity if we hope to eventually deploy this information for clinical use.”

Featured image use credit: Illumina

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

2025 EMR Software Pricing Guide

2025 EMR Software Pricing Guide

Featured Interview

Kinetik CEO Sufian Chowdhury on Fighting NEMT Fraud & Waste

Most-Read

White House, IBM Partner to Fight COVID-19 Using Supercomputers

HHS Sets Pricing Targets for Trump’s EO on Most-Favored-Nation Drug Pricing

23andMe to Mine Genetic Data for Drug Discovery

Regeneron to Acquire Key 23andMe Assets for $256M, Pledges Continuity of Consumer Genome Services

CureIS Healthcare Sues Epic: Alleges Anti-Competitive Practices & Trade Secret Theft

The Evolving Role of Physician Advisors: Bridging the Gap Between Clinicians and Administrators

The Evolving Physician Advisor: From UM to Value-Based Care & AI

UnitedHealth Group Names Stephen Hemsley CEO as Andrew Witty Steps Down

UnitedHealth CEO Andrew Witty Steps Down, Stephen Hemsley Returns as CEO

Omada Health Files for IPO

Omada Health Files for IPO

Blue Cross Blue Shield of Massachusetts Launches "CloseKnit" Virtual-First Primary Care Option

Blue Cross Blue Shield of Massachusetts Launches “CloseKnit” Virtual-First Primary Care Option

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

2019 MedTech Breakthrough Award Category Winners Announced

MedTech Breakthrough Announces 2025 MedTech Breakthrough Award Winners

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |