• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage
  • Life Sciences
  • Research

Mount Sinai Scientists Reveal Solutions for Opioid Epidemics Using Machine Learning

by HITC Staff 09/13/2017 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Why The Opioid Epidemic Makes EHRs Essential To Public Health

Mount Sinai researchers have identified unique structural, biological and chemical insights in the way different opioid drugs activate the receptors and specific signaling pathways responsible for the drug’s beneficial and adverse effects, according to a study to be published in Nature’s Scientific Reports. 

Opioid overdoses are the leading cause of accidental death in the United States. The findings of this study may provide a blueprint for designing improved painkillers.

There have been many attempts to develop better opioid drugs but this has been largely unsuccessful due to incomplete understanding of the molecular signatures underlying the analgesic effects as opposed to the unwanted side effects. Potent opioid drugs that are often tied to fatal overdoses (e.g., heroin, fentanyl, or carfentanil) work by binding to opioid receptors in the nervous system. These drugs also provoke dopamine release, which causes euphoria leading to addiction and inhibits nerve cells in a region of the brain that regulates breathing, which can lead to respiratory depression and accidental death by overdose.

The therapeutic effect of opioid drugs is mainly attributed to mu-opioid receptor (MOR) activation leading to G protein signaling, meaning that the drug binds to the MOR receptor and causes a change in its molecular structure, which then activates a protein called the G protein. However, the drug’s side effects have mostly been linked to a different process known as β-arrestin signaling, which plays a role in the regulation of these receptors. To shed light on this, the researchers carried out molecular dynamics simulations in mouse models of MOR bound to a classical opioid drug (morphine) or a potent G protein-biased agonist (TRV-130) that is currently being evaluated in human clinical trials for its potent analgesic effect with less respiratory depression and constipation than morphine.

The results of rigorous machine learning analyses of these simulations revealed unique structural, dynamic, and kinetic insights that have a direct utilization in the design of improved therapeutics targeting MOR.

“These new insights will provide a roadmap to develop a new class of drugs that are non-addictive and less harmful for patients,” said Marta Filizola, PhD, Professor of Pharmacological Science and Professor of Neuroscience, Dean of The Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, and lead investigator of the study. “These insights may help us engineer new painkillers with reduced side effects, particularly respiratory depression. An alternative, non-addictive medication for chronic pain will help us combat the ongoing national crisis of addiction to opioid drugs and the devastating overdose epidemic deriving from it.”

 

In addition to postdoctoral researchers Abhijeet Kapoor, PhD, and Assistant Professor Davide Provasi, PhD, in the Filizola lab, researchers from Universitat Pompeu Fabra in Barcelona, Spain, contributed to this National Institute on Drug Abuse (NIDA)-funded study. The findings will inform other studies conducted at the Addiction Institute at Mount Sinai (AIMS) led by Yasmin Hurd, PhD, Professor of Psychiatry and Ward-Coleman Chair of Translational Neuroscience at Mount Sinai and the Friedman Brain Institute led by Eric Nestler, MD, PhD, Professor of Neuroscience and Dean for Academic and Scientific Affairs at Mount Sinai.

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Machine Learning, Mount Sinai, Opioid Epidemic

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

2025 EMR Software Pricing Guide

2025 EMR Software Pricing Guide

Featured Interview

Kinetik CEO Sufian Chowdhury on Fighting NEMT Fraud & Waste

Most-Read

Blue Cross Blue Shield of Massachusetts Launches "CloseKnit" Virtual-First Primary Care Option

Blue Cross Blue Shield of Massachusetts Launches “CloseKnit” Virtual-First Primary Care Option

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

2019 MedTech Breakthrough Award Category Winners Announced

MedTech Breakthrough Announces 2025 MedTech Breakthrough Award Winners

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

KLAS: Epic Dominates 2024 EHR Market Share Amid Focus on Vendor Partnership; Oracle Health Sees Losses Despite Tech Advances

KLAS: Epic Dominates 2024 EHR Market Share Amid Focus on Vendor Partnership; Oracle Health Sees Losses Despite Tech Advances

'Cranky Index' Reveals EHR Alert Frustration Peaks Midweek, Highest Among Admin Staff

‘Cranky Index’ Reveals EHR Alert Frustration Peaks Midweek, Highest Among Admin Staff

Madison Dearborn Partners to Acquire Significant Stake in NextGen Healthcare

Madison Dearborn Partners to Acquire Significant Stake in NextGen Healthcare

Wandercraft Begins Clinical Trials for Physical AI-Powered Personal Exoskeleton

Wandercraft Begins Clinical Trials for Physical AI-Powered Personal Exoskeleton

Chipiron Secures $17M to Transform MRI Access with Portable Scanner

Chipiron Secures $17M to Transform MRI Access with Portable Scanner

Abbott to Integrate FreeStyle Libre Glucose Data with Epic EHR

Abbott to Integrate FreeStyle Libre Glucose Data with Epic EHR

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |