• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Life Sciences
  • Investments
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage

NVIDIA Introduces La-Proteina: A Breakthrough in Atomistic Protein Generation via Partially Latent Flow Matching

by Jasmine Pennic 07/15/2025 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

What You Should Know: 

– NVIDIA Research, in collaboration with the University of Oxford and Mila – Québec AI Institute, has unveiled La-Proteina, a novel method for atomistic protein design. 

– Published on arXiv on July 13, 2025, La-Proteina is designed to directly generate fully atomistic protein structures jointly with their underlying amino acid sequences, addressing a critical challenge in de novo protein design.

Optimizing Protein Design with Fixed-Dimensional Latent Space

Existing methods often decouple sequence and structure generation or struggle with modeling accuracy and scalability when tackling full atomistic structures. La-Proteina introduces a “partially latent protein representation” where the coarse backbone structure (alpha-carbon coordinates) is modeled explicitly, while sequence and atomistic details are captured via per-residue latent variables of fixed dimensionality. This approach effectively sidesteps challenges associated with explicit side-chain representations, which vary in length during generation.

La-Proteina combines the strengths of explicit and latent modeling through a novel partially latent flow matching framework. This method models the alpha-carbon coordinates explicitly, while encompassing the sequence and coordinates of all other non-alpha-carbon atoms within a continuous, fixed-size latent representation for each residue.

The model is trained in two stages:

  1. Variational Autoencoder (VAE): An encoder maps the input protein (sequence and structure) to latent variables, and a decoder reconstructs complete proteins from these latent variables and alpha-carbon coordinates.
  2. Partially Latent Flow Matching Model: This model learns the joint distribution over latent variables and alpha-carbon atom coordinates, building on the VAE.

This partially latent approach transforms the core learning problem from a mixed discrete-continuous space with variable dimensionality into a per-residue, continuous space of fixed dimensionality, making it amenable to powerful generative modeling techniques like flow matching.

State-of-the-Art Performance and Scalability

La-Proteina achieves state-of-the-art performance on multiple generation benchmarks, including all-atom co-designability, diversity, and structural validity, as confirmed through detailed structural analyses and evaluations.

Key achievements include:

  • High Sensitivity: Achieves excellent all-atom co-designability, designability, and diversity, while remaining competitive in novelty.
  • Scalability to Large Proteins: La-Proteina can generate co-designable proteins of up to 800 residues, a regime where most baselines collapse and fail to produce valid samples due to computational limitations and memory constraints. This demonstrates La-Proteina’s robustness and strong scalability.
  • Structural Validity: Produces structures with higher structural validity, including better MolProbity scores, clash scores, Ramachandran angle outliers, and covalent bond geometry outliers, making them more physically realistic than existing all-atom generators. It accurately recovers rotameric states and their frequencies, unlike baselines that miss modes or populate unrealistic angular regions.
  • Atomistic Motif Scaffolding: La-Proteina significantly surpasses previous models in atomistic motif scaffolding performance, unlocking critical atomistic structure-conditioned protein design tasks. It successfully solves most benchmark tasks across all-atom and tip-atom scaffolding, in both indexed and unindexed setups.

Architectural Design and Training

La-Proteina’s neural networks (encoder, decoder, denoiser) are implemented using efficient transformer architectures. The denoiser network, which accounts for approximately 160M parameters, conditions on interpolation times, crucial for performance. The encoder and decoder each consist of about 130M parameters. A key design decision involves using two separate interpolation times for alpha-carbon coordinates 

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Artificial Intelligence, NVIDIA

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

Digital Health Funding Q3 2025: Choppy Undercurrents Beneath a Steady Surface

Featured Interview

ConcertAI VP Shares View on AI Hallucinations and the Fabricated Data Crisis in Scientific Publishing

Most-Read

Qualtrics Acquires Press Ganey Forsta for $6.75B to Create the Most Comprehensive AI Experience Platform

Qualtrics Acquires Press Ganey Forsta for $6.75B to Create the Most Comprehensive AI Experience Platform

Pfizer and Trump Administration Announce Landmark Agreement to Lower Drug Costs

Pfizer and Trump Administration Announce Landmark Agreement to Lower Drug Costs

KLAS Report: Epic's Native Ambient Speech Tool Reshapes Customer AI Strategies

KLAS Report: Epic’s Native Ambient Speech Tool Reshapes Customer AI Strategies

Epic Unveils MyChart Central and New APIs to Advance Interoperability at Open@Epic

Epic Outlines Roadmap for Next-Generation Data Sharing at Open@Epic

Epic Launches Comet: A New AI Platform to Predict Patient Health Journeys

Epic Launches Comet: A New AI Platform to Predict Patient Health Journeys

RevSpring to Acquire Kyruus Health, Creating a Unified Patient Experience

RevSpring to Acquire Kyruus Health, Creating a Unified Patient Experience

Oracle Confirms Layoffs in Kansas City

Oracle Confirms Layoffs in Kansas City

Philips Future Health Index 2025: AI and Digital Tech Can Help Solve Cardiac Care Crisis

Philips Future Health Index 2025: AI and Digital Tech Can Help Solve Cardiac Care Crisis

Optain Health Secures $26M to Advance AI-Powered Retinal Screening

Optain Health Secures $26M for AI-Powered Retinal Screening

Sutter Health and Epic Launch "Sutter Sync" to Optimize Remote Chronic Care

Sutter Health and Epic Launch “Sutter Sync” to Optimize Remote Chronic Care

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |