• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage
  • Life Sciences
  • Research

How Healthcare NLP has Evolved from 2020 to 2021

by David Talby, CTO, John Snow Labs 11/01/2021 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print
NLP is Raising the Bar on Accurate Detection of Adverse Drug Events
David Talby, CTO, John Snow Labs

Few industries have embraced natural language processing (NLP) as openly as healthcare. With the ability to identify new variants of COVID-19 and help speed up clinical trials for the vaccine, the pandemic is just one example of what NLP is capable of achieving. And while new research points to NLP budgets growing significantly across vertical industries, locations, company sizes, and maturity levels, healthcare is leading the pack.

Big strides have been made in AI and NLP over the last year, but despite progress and increased investments, many of the challenges and barriers to entry remain the same. 

The second annual NLP Industry Survey explores the triumphs, challenges, applications, and tools shaping NLP adoption. 

The largest industry representation (17%) in this survey came from healthcare respondents, even greater than those in technology fields, which is reflective of overall industry adoption. As such, by analyzing how NLP has evolved over the last year in the healthcare space, we can get a glimpse of what’s on the horizon for the technology.

NLP Budgets Keep Growing

While 60% of tech leaders indicated their NLP budgets grew by at least 10%, a majority of healthcare technologists are spending 10-30% more on NLP compared to last year. It’s encouraging to see that even in the wake of the pandemic, IT investments in areas like NLP were still strong. It’s even possible that the circumstances of last year proved how valuable the technology can be. 

For example, NLP algorithms are now able to generate protein sequences and predict virus mutations, including key changes that help the coronavirus evade the immune system, according to MIT research. Kaiser Permanente uses NLP for extracting key features from EHR notes to optimize hospital patient flow — something critical to operations when healthcare organizations are overwhelmed with an influx of patients with differing levels of severity. These are just a few examples of what investments in NLP can achieve. 

NLP Use Cases are Expanding

Aligned with respondents from other industries, healthcare tech leaders cited named entity recognition (NER) and document classification as the primary use cases for NLP. Looking ahead, we can expect growth in Q&A and natural language generation use cases powered by large language prediction models and related open-source alternatives. This will bring a greater level of humanity to NLP, as users will be able to speak in plain language directly to the technology and get a prompt, contextually relevant response. 

De-identification is another use case that’s popular among highly regulated industries, such as healthcare. This enables users to redact personally identifiable information — names, addresses, social security numbers — subject to regulations like HIPAA and GDPR. De-identification will likely gain steam as a use case for other industries as businesses develop better data privacy practices. De-identification can also remove certain types of spurious correlations or biases from models, so will likely become more commonplace as Responsible AI practices become mainstream.

NLP Challenges: Accuracy Above All

When dealing with patients and their care, it’s clear why accuracy is the top priority users consider when evaluating an NLP solution. That said, it’s also one of the biggest challenges users face — 44% of them to be exact. Accuracy refers to the effectiveness of pre-trained models that come with NLP libraries, and it’s critical as results from previous tasks and models are used downstream. 

Not only is getting it right from the get-go paramount but being able to tune models over time is equally important in order to prevent degradation and understand domain-specific jargon. As healthcare is an industry with unique challenges and nuances, this often requires a data scientist as well as a domain expert for optimal results. Because of the changing nature of data, regulations, and discoveries, even as NLP technology matures, accuracy will likely remain a challenge in years to come. 

NLP Tools: Libraries and Cloud Use  

Among the NLP libraries in use, Spark NLP remains the most popular. It is used by nearly a third (31%) of general respondents and 59% of healthcare respondents. Additionally, the use of NLP cloud services is rising steadily, with a 23% increase for the Top 4 cloud providers — AWS, Azure, Google, and IBM — since 2020. Even so, there are serious concerns by survey respondents about the pricing models for these cloud services as NLP practices scale. For solutions that need to process many documents on a regular basis, these cloud services are perceived as prohibitively expensive.

While progress has endured the global pandemic, a worldwide shortage of AI talent, and ongoing concerns about data sharing and privacy, NLP has proven its here to stay. Although it’s likely that challenges such as accuracy, scalability, and cost will persist into the future, new exciting use cases and advances in the technology will be interesting to watch, with the healthcare industry forging the path forward. 


About David Talby

David Talby, Ph.D., MBA, is the CTO of John Snow Labs.  the AI and NLP for healthcare company provides state-of-the-art software, models, and data to help healthcare and life science organizations put AI to good use.  He has spent his career making AI, big data and data scientists solve real-world problems in healthcare, life science and related fields.


  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Artificial Intelligence, Machine Learning, Natural Language Processing (NLP), NLP

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

2025 EMR Software Pricing Guide

2025 EMR Software Pricing Guide

Featured Interview

Kinetik CEO Sufian Chowdhury on Fighting NEMT Fraud & Waste

Most-Read

Blue Cross Blue Shield of Massachusetts Launches "CloseKnit" Virtual-First Primary Care Option

Blue Cross Blue Shield of Massachusetts Launches “CloseKnit” Virtual-First Primary Care Option

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

2019 MedTech Breakthrough Award Category Winners Announced

MedTech Breakthrough Announces 2025 MedTech Breakthrough Award Winners

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

WeightWatchers Files for Bankruptcy to Eliminate $1.15B in Debt

KLAS: Epic Dominates 2024 EHR Market Share Amid Focus on Vendor Partnership; Oracle Health Sees Losses Despite Tech Advances

KLAS: Epic Dominates 2024 EHR Market Share Amid Focus on Vendor Partnership; Oracle Health Sees Losses Despite Tech Advances

'Cranky Index' Reveals EHR Alert Frustration Peaks Midweek, Highest Among Admin Staff

‘Cranky Index’ Reveals EHR Alert Frustration Peaks Midweek, Highest Among Admin Staff

Madison Dearborn Partners to Acquire Significant Stake in NextGen Healthcare

Madison Dearborn Partners to Acquire Significant Stake in NextGen Healthcare

Wandercraft Begins Clinical Trials for Physical AI-Powered Personal Exoskeleton

Wandercraft Begins Clinical Trials for Physical AI-Powered Personal Exoskeleton

Chipiron Secures $17M to Transform MRI Access with Portable Scanner

Chipiron Secures $17M to Transform MRI Access with Portable Scanner

Abbott to Integrate FreeStyle Libre Glucose Data with Epic EHR

Abbott to Integrate FreeStyle Libre Glucose Data with Epic EHR

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |