• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Life Sciences
  • Investments
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage

Researchers Develop Self-Powered Sensor for Remote Monitoring of Surgical Patients

by Jasmine Pennic 08/29/2018 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Researchers Develop Self-Powered Sensor for Remote Monitoring of Surgical Patients

Researchers at the University of Waterloo has developed a self-powered sensor could allow doctors to remotely monitor the recovery of surgical patients. According to the recent study published in the journal Sensors and Actuators A: Physical, the small, tube-like device is designed to be fitted to braces after joint surgery to wirelessly send information to computers, smartphones or smartwatches to track the range of motion and other indicators of improvement.

The sensor was developed by Hassan Askari, an engineering doctoral candidate at Waterloo collaborated at Waterloo with fellow Ph.D. student Ehsan Asadi, and engineering professors Amir Khajepour and Mir Behrad Khamesee, as well as doctoral student Zia Saadatnia and professor Jean Zu at the University of Toronto.

The same sensor could also be used in a variety of other ways, including in the tires of autonomous vehicles to detect and respond to icy roads. A prototype built and tested by the researchers combines electromagnetism and triboelectricity, a relatively new energy harvesting technique that involves bringing different materials together to produce current.

When bent or twisted, the device generates enough electricity for sensing and powering electronic circuits for processing and wireless signal transmission.
“The aim was to develop a sensor that works without having a battery attached to it,” said Askari. “It is its own power source.”

That makes the device well-suited for applications that put a premium on reliability and where it would be difficult or expensive to replace worn-out batteries.
Askari estimated the sensors – about six centimeters long and one centimeter wide – could be commercially manufactured for $5 to $10 each.

Research is now focused on making them smaller and more sensitive using triboelectricity alone. The software is also being developed to process signals for the tire application. When attached to the inside of tires, they could sense changing road conditions and instantly send information to control systems to enable self-driving vehicles to make adjustments.

“That data would be continuously collected, so it would be as though the physician or physiotherapist was always there, always observing the patient,” said Hassan Askari, an engineering doctoral candidate at Waterloo.

“Based on the forces, the interaction between the road and the tires, we could actually detect ice or rain,” said Askari. “That is extremely important information for autonomous driving.”

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: remote patient monitoring, sensors

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Interview

Reach7 Diabetes Studios Founder Chun Yong on Reimagining Chronic Care with a Concierge Medical Model

Most-Read

Bayer Exits Radiology AI Market, Discontinuing Calantic and Blackford

Bayer Exits Radiology AI Market, Discontinuing Calantic and Blackford

Oracle Health Launches AI Center of Excellence for Healthcare

Oracle Health Launches AI Center of Excellence for Healthcare

Particle Health Addresses Integration to Epic Data Despite Dispute

US Court Allows Particle’s Antitrust Claims Against Epic to Proceed

Epic Launches Comet: A New AI Platform to Predict Patient Health Journeys

Epic Launches Comet: A New AI Platform to Predict Patient Health Journeys

Preparing for the ‘Big Beautiful Bill’: How Digitization Can Streamline Medicaid Eligibility & Social Care Delivery

Preparing for the ‘Big Beautiful Bill’: How Digitization Can Streamline Medicaid Eligibility & Social Care Delivery

Evernorth Health Services Invests $3.5B in Shields Health Solutions

Evernorth Health Services Invests $3.5B in Shields Health Solutions

KLAS Report: Oracle Health Faces Customer Losses and Declining Satisfaction

KLAS Report: Oracle Health Faces Customer Losses and Declining Satisfaction

Tempus AI Acquires Digital Pathology Leader Paige for $81.25M

M&A:Tempus AI Acquires Digital Pathology Leader Paige for $81.25M

Mira Launches Ultra4™, the First At-Home Hormone Monitor with Lab-Quality Insights

Femtech: Mira Launches Ultra4™, the First At-Home Hormone Monitor with Lab-Quality Insights

How Healthcare CIOs Can Solve the Unstructured Data Crisis and Reduce Storage Costs

How Healthcare CIOs Can Solve the Unstructured Data Crisis and Reduce Storage Costs

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |