• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Life Sciences
  • Investments
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage

Advance Care Planning Startup Vynca Wins Patient Matching Algorithm Challenge

by Fred Pennic 11/08/2017 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Patient Matching Algorithm Challenge

The U.S. Department of Health and Human Services’ Office of the National Coordinator for Health Information Technology (ONC) today announced advance care planning solution company, Vynca as the first place ($25k) winner of the Patient Matching Algorithm Challenge. ONC selected the winning submissions from over 140 competing teams and almost 7,000 submissions using an ONC-provided dataset.  

Patient Matching Algorithm Challenge Overview

“Patient matching” in health IT describes the techniques used to identify and match the data about patients held by one healthcare provider with the data about the same patients held either within the same system or by another system (or many other systems). The inability to successfully match patients to any and all of their data records can impeded interoperability resulting in patient safety risks and decreased provider efficiency.

For the challenge, Vynca used a stacked model that combined the predictions of eight different models. They reported that they manually reviewed less than .01 percent of the records. The winner was based on the best “F” score, which is an accuracy that factors in both precision and recall.

Other runner-up winners included: 

–  Second Place ($20k): Picsure

PICSURE used an algorithm based on the Fellegi-Sunter (1969) method for probabilistic record matching and performed a significant amount of manual review.

– Third Place ($15k): Information Softworks 

Information Softworks also used a Fellegi-Sunter-based enterprise master patient index (EMPI) system with some additional tuning, they also reported extremely limited manual review.

– Best First Run ($5k): Information Softworks

– Best Recall ($5k): Picsure 

– Best Precision ($5k): Picsure

The dataset and scoring platform used in the challenge will remain available for students, researchers, or anyone else interested in additional analysis and algorithm development, and can be accessed via the Patient Matching Algorithm Challenge website.

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Patient Matching Algorithm

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Research Report

2026 Best in KLAS Awards: The Full List of Software & Services Winners

Most-Read

The "Platform" Squeeze: Epic Releases Native AI Charting, Putting Venture-Backed Scribes on Notice

The “Platform” Squeeze: Epic Releases Native AI Charting, Putting Venture-Backed Scribes on Notice

Analysis: Oracle Cerner’s Plans for a National EHR

Oracle May Cut 30k Jobs and Sell Cerner to Fund $156B OpenAI Deal

The $1.9B Exit: Why CommonSpirit is Insourcing Revenue Cycle and Tenet is Betting Big on Conifer AI

The $1.9B Exit: Why CommonSpirit is Insourcing Revenue Cycle and Tenet is Betting Big on Conifer AI

KLAS 2026 Rankings: Aledade and Guidehealth Named Top VBC Enablement Firms

KLAS 2026 Rankings: Aledade and Guidehealth Named Top VBC Enablement Firms

Beyond the Hype: New KLAS Data Validates the Financial and Clinical ROI of Ambient AI

Beyond the Hype: New KLAS Data Validates the Financial and Clinical ROI of Ambient AI

Anthropic Debuts ‘Claude for Healthcare’ and Opus 4.5 to Engineer the Future of Life Sciences

Anthropic Debuts ‘Claude for Healthcare’ and Opus 4.5 to Engineer the Future of Life Sciences

OpenAI Debuts ChatGPT Health: A ‘Digital Front Door’ That Connects Medical Records to Agentic AI

OpenAI Debuts ChatGPT Health: A ‘Digital Front Door’ That Connects Medical Records to Agentic AI

From Genes to Hackers: The Hidden Cybersecurity Risks in Life Sciences

From Genes to Hackers: The Hidden Cybersecurity Risks in Life Sciences

Utah Becomes First State to Approve AI System for Prescription Renewals

Utah Becomes First State to Approve AI System for Prescription Renewals

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

Secondary Sidebar

Footer

Company

  • About Us
  • 2026 Editorial Calendar
  • Advertise with Us
  • Reprints and Permissions
  • Op-Ed Submission Guidelines
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2026. HIT Consultant Media. All Rights Reserved. Privacy Policy |