• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Life Sciences
  • Investments
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage

Health Catalyst Launches Open Source, Healthcare Machine Learning Repository

by HITC Staff 12/02/2016 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Health Catalyst Launches Open Source, Healthcare Machine Learning Repository

Healthcare data warehouse provider Health Catalyst has unveiled a free open source, machine learning repository specifically for healthcare data scientists to enable industry-wide collaboration to advance outcomes improvement through artificial intelligence. Named healthcare.ai, the open source repository is designed to make machine learning accessible to the thousands of healthcare professionals who possess little or no data science skills but who share an interest in using the technology to improve patient care.

By making its central repository of proven machine learning algorithms available for free, Health Catalyst’s healthcare.ai enables a large, diverse group of technical healthcare professionals to quickly use machine learning tools to build accurate models. The healthcare.ai site provides one central spot to download algorithms and tools, read documentation, request new features, submit questions, follow the blog, and contribute code.

How healthcare.ai works

The open source repository features packages for two common languages in healthcare data science—R and Python. These packages are designed to streamline healthcare machine learning by simplifying the workflow of creating and deploying models, and delivering functionality specific to healthcare:

– Pays attention to longitudinal questions

– Offers an easy way to do risk-adjusted comparisons

Both healthcare.ai packages provide an easy way to create models on a health system’s own data. This includes linear and random forest models, ways to handle missing data, guidance on feature selection, proper performance metrics, and easy database connections.

– Provides easy connections and deployment to databases

Participation in healthcare.ai is simple.  Interested parties can visit the site, choose either the R or Python language, read the install instructions, and follow the examples – at no cost. There is no similar platform or environment for healthcare professionals who are seeking to expand their skills and the value of machine learning to their organization.

“Machine learning and artificial intelligence are going to transform healthcare. We are seeing amazing results and yet we are barely getting started. We are applying it to the reduction of patient harm events, care management, hospital acquired infections, revenue cycle management, patient risk stratification, and more,” said Dale Sanders, Executive Vice President of Health Catalyst in a statement. “With machine learning, the data is talking to us, exposing insights that we’ve never seen before with traditional business intelligence and analytics. By open sourcing healthcare.ai, we hope to facilitate industrywide collaboration and advance the adoption of machine learning, making it easy for healthcare organizations to learn from and enhance these tools together, without the need for a team of data scientists. All of us have seen what open source software has achieved in other industries and we want to be a part of that in healthcare. ”

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: Health Catalyst, Machine Learning, Machine Learning Repository, Open Source, open source repository

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

2026 Predictions & Trends

Healthcare 2026 Forecast: Executives on AI Survival, Financial Reckoning, and the End of Point Solutions

2026 Healthcare Executive Predictions: Why the AI “Pilot Era” Is Officially Over

Most-Read

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

KLAS Report: Why Hospitals Are Choosing Efficiency Over 'Agentic' AI Hype in 2025

KLAS Report: Why Hospitals Are Choosing Efficiency Over ‘Agentic’ AI Hype in 2025

Advanced Primary Care 2026: Top 6 Investments for Health Systems According to Harvard Medical School

Advanced Primary Care 2026: Top 6 Investments for Health Systems According to Harvard Medical School

AI Nutrition Labels: The Key to Provider Adoption and Patient Trust?

AI Nutrition Labels: The Key to Provider Adoption and Patient Trust?

Kristen Hartsell, VP of Clinical Services, RedSail Technologies

The Pharmacy Closures Crisis: How Independent Pharmacies Are Fixing Pharmacy Deserts

HHS Launches 'OneHHS' AI Strategy to Integrate AI Across CDC, CMS, and FDA for Efficiency and Public Trust

HHS Launches ‘OneHHS’ AI Strategy to Integrate AI Across CDC, CMS, and FDA for Efficiency and Public Trust

From Overwhelmed to Optimized: How AI Agents Address Staffing Challenges and Burnout in Healthcare

From Overwhelmed to Optimized: How AI Agents Address Staffing Challenges and Burnout in Healthcare

The VBC Paradox: Why Hospitals Are Doubling Down on Value-Based Care While Revenue at Risk Lags

The VBC Paradox: Why Hospitals Are Doubling Down on Value-Based Care While Revenue at Risk Lags

Tebra Secures $250M to Challenge Legacy EHRs with AI-Powered Automation

Tebra Secures $250M to Challenge Legacy EHRs with AI-Powered Automation

AstraZeneca Selects Salesforce Agentforce Life Sciences to Deploy AI-Powered Global Customer Engagement

AstraZeneca Selects Salesforce Agentforce Life Sciences to Deploy AI-Powered Global Customer Engagement

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Op-Ed Submission Guidelines
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2026. HIT Consultant Media. All Rights Reserved. Privacy Policy |