• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Life Sciences
  • Investments
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage

Mount Sinai Researchers Use Computer Algorithms to Diagnose HCM

by Jasmine Pennic 11/23/2016 Leave a Comment

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Mount Sinai Health System Launches Telehealth Initiatives

Computer algorithms can automatically interpret echocardiographic images and distinguish between pathological hypertrophic cardiomyopathy (HCM) and physiological changes in athletes’ hearts, according to researchers from the Icahn School of Medicine at Mount Sinai (ISMMS) published online in the Journal of the American College of Cardiology.

The team included researchers from both Dr. Sengupta’s and Dr. Dudley’s labs, including medical student Sukrit Narula, Khader Shameer, PhD, and Alaa Mabrouk Salem Omar, MD, PhD.

What is HCM?

HCM is a disease in which a portion of the myocardium enlarges, creating functional impairment of the heart. It is the leading cause of sudden death in young athletes. Diagnosing HCM is challenging since athletes can present with physiological hypertrophy, in which their hearts appear large, but do not feature the pathological abnormality of HCM. The current standard of care requires precise phenotyping of the two similar conditions by a highly trained cardiologist.

“Our research has demonstrated for the first time that machine-learning algorithms can assist in the discrimination of physiological versus pathological hypertrophic remodeling, thus enabling easier and more accurate diagnoses of HCM,” said senior study author Partho P. Sengupta, MD, Director of Cardiac Ultrasound Research and Professor of Medicine in Cardiology at the Icahn School of Medicine at Mount Sinai. “This is a major milestone for echocardiography, and represents a critical step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images. This could help novice echo readers with limited experience, making the diagnosis rapid and more widely available.”

Research Findings

Using data from an existing cohort of 139 male subjects who underwent echocardiographic imaging at ISMMS (77 verified athlete cases and 62 verified HCM cases), the researchers analyzed the images with tissue tracking software and identified variable sets to incorporate in the machine-learning models. They then developed a collective machine-learning model with three different algorithms to differentiate the two conditions. The model demonstrated superior diagnostic ability comparable to conventional 2D echocardiographic and Doppler-derived parameters used in clinical practice.

“Our approach shows a promising trend in using automated algorithms as precision medicine techniques to augment physician-guided diagnosis,” said study author Joel Dudley, PhD, Director of the Institute for Next Generation Healthcare and Director of the Center for Biomedical Informatics at ISMMS. “This demonstrates how machine-learning models and other smart interpretation systems could help to efficiently analyze and process large volumes of cardiac ultrasound data, and with the growth of telemedicine, it could enable cardiac diagnoses even in the most resource-burdened areas.”

The team is now in the process of developing other artificial intelligence-powered cardiovascular phenotyping algorithms to deploy to help clinicians, echocardiography technicians, and medical students to make diagnoses.

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tagged With: HCM, Mount Sinai

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

2026 Predictions & Trends

Healthcare 2026 Forecast: Executives on AI Survival, Financial Reckoning, and the End of Point Solutions

2026 Healthcare Executive Predictions: Why the AI “Pilot Era” Is Officially Over

Most-Read

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

NYC Health + Hospitals to Acquire Maimonides in $2.2B Safety Net Overhaul

KLAS Report: Why Hospitals Are Choosing Efficiency Over 'Agentic' AI Hype in 2025

KLAS Report: Why Hospitals Are Choosing Efficiency Over ‘Agentic’ AI Hype in 2025

Advanced Primary Care 2026: Top 6 Investments for Health Systems According to Harvard Medical School

Advanced Primary Care 2026: Top 6 Investments for Health Systems According to Harvard Medical School

AI Nutrition Labels: The Key to Provider Adoption and Patient Trust?

AI Nutrition Labels: The Key to Provider Adoption and Patient Trust?

Kristen Hartsell, VP of Clinical Services, RedSail Technologies

The Pharmacy Closures Crisis: How Independent Pharmacies Are Fixing Pharmacy Deserts

HHS Launches 'OneHHS' AI Strategy to Integrate AI Across CDC, CMS, and FDA for Efficiency and Public Trust

HHS Launches ‘OneHHS’ AI Strategy to Integrate AI Across CDC, CMS, and FDA for Efficiency and Public Trust

From Overwhelmed to Optimized: How AI Agents Address Staffing Challenges and Burnout in Healthcare

From Overwhelmed to Optimized: How AI Agents Address Staffing Challenges and Burnout in Healthcare

The VBC Paradox: Why Hospitals Are Doubling Down on Value-Based Care While Revenue at Risk Lags

The VBC Paradox: Why Hospitals Are Doubling Down on Value-Based Care While Revenue at Risk Lags

Tebra Secures $250M to Challenge Legacy EHRs with AI-Powered Automation

Tebra Secures $250M to Challenge Legacy EHRs with AI-Powered Automation

AstraZeneca Selects Salesforce Agentforce Life Sciences to Deploy AI-Powered Global Customer Engagement

AstraZeneca Selects Salesforce Agentforce Life Sciences to Deploy AI-Powered Global Customer Engagement

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Op-Ed Submission Guidelines
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2026. HIT Consultant Media. All Rights Reserved. Privacy Policy |