• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer

  • Opinion
  • Health IT
    • Behavioral Health
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Patient Engagement
    • Population Health Management
    • Revenue Cycle Management
    • Social Determinants of Health
  • Digital Health
    • AI
    • Blockchain
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • M&A
  • Value-based Care
    • Accountable Care (ACOs)
    • Medicare Advantage
  • Life Sciences
  • Research

The Era of Big Data Analytics in Healthcare

by Jasmine Pennic 10/03/2013 15 Comments

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Big data analytics in healthcare splashed onto the front page of the Wall Street Journal earlier this summer, heralding its arrival as a new and important topic for mainstream media to follow.

In reality, we’ve had big data in healthcare for as long as I’ve been around. What we haven’t had are the tools for effective and actionable analytics across our data.

But we do now.

That’s why I think this new era of big data in healthcare should more appropriately be dubbed “big analytics.” With more information available to us and better software and hardware to digest and synthesize it, our real challenge is to shape a vision for big analytics that will improve all aspects of healthcare delivery without drowning us in meaningless metrics.

Our first steps to this vision require us to abandon the “silo think” we have innocently and comfortably adopted. We have grown to view healthcare IT as supporting clinical, financial and operational decisions. Are these decisions separate and independent? I argue not.

To use an example from my administration days, a seemingly simple clinical problem — the occasional failure to order indicated imaging studies out of the emergency department — was actually rooted in complex clinical, financial and operational causes.

In our analysis of the issue, transporter staffing levels during day shifts turned out to be the root cause. Financial data had led us to tightly manage transporter hours to reduce costs. Operationally, we reinforced this behavior by rewarding managers to limit overtime.

When there were more than the expected call-offs for a shift, patient transports slowed, and scheduled imaging for admitted patients backlogged into the evening (just when the emergency department imaging utilization was peaking). This led to marked delays in treatment in the emergency department.

Of course, such delays were unacceptable because this angered patients and subverted a separate operational goal of improving patient satisfaction in the ED. Mindful of our patient satisfaction metrics, some clinicians, we discovered, were simply skipping indicated imaging when their clinical suspicions were low.

What does this have to do with big analytics?

Big data encompasses disparate sources, structured and unstructured, clinical, financial and operational, as well as extramural sources. When properly applied to these data, big analytics should unveil relationships previously unknown to the decision-maker. Often these are subtle but significant relationships — like that between transporter staffing levels and clinical decision-making.

When we analytically examine the data, we can provide the decision-maker with all the consequences (financial, patient satisfaction, employee engagement, clinical quality) of being short two transporters on the 7 – 3 shift. This is predictive analytics.

When big analytics reaches maturity, we should expect it to provide weighted solutions for the decision-maker. For example, we can show lost margins from missed MRIs balanced against the costs associated with overtime or increased staffing levels to recommend a course of action to decision-makers. This is prescriptive analytics.

Big analytics should also ultimately head off problems. Are staffing threats aligning? Who’s on vacation? Are we close to a holiday weekend?  When critical components converge, we should expect big analytics to sense and actively warn the decision-maker. This is preventive analytics.

The data and analytic tools for this new era are already available. It’s our vision that will ultimately determine how we transform healthcare with big analytics.

About the Author: 

Frank X. Speidel, MD, MBA, FACEP is Chief Medical Officer for Healthcare IT Leaders, a consultancy and HIT staff augmentation firm that matches IT talent to hospitals and health systems for EMR, ICD-10 and analytic engagements.

 

  • LinkedIn
  • Twitter
  • Facebook
  • Email
  • Print

Tap Native

Get in-depth healthcare technology analysis and commentary delivered straight to your email weekly

Reader Interactions

Primary Sidebar

Subscribe to HIT Consultant

Latest insightful articles delivered straight to your inbox weekly.

Submit a Tip or Pitch

Featured Insights

2025 EMR Software Pricing Guide

2025 EMR Software Pricing Guide

Featured Interview

Kinetik CEO Sufian Chowdhury on Fighting NEMT Fraud & Waste

Most-Read

Medtronic to Separate Diabetes Business into New Standalone Company

Medtronic to Separate Diabetes Business into New Standalone Company

White House, IBM Partner to Fight COVID-19 Using Supercomputers

HHS Sets Pricing Targets for Trump’s EO on Most-Favored-Nation Drug Pricing

23andMe to Mine Genetic Data for Drug Discovery

Regeneron to Acquire Key 23andMe Assets for $256M, Pledges Continuity of Consumer Genome Services

CureIS Healthcare Sues Epic: Alleges Anti-Competitive Practices & Trade Secret Theft

The Evolving Role of Physician Advisors: Bridging the Gap Between Clinicians and Administrators

The Evolving Physician Advisor: From UM to Value-Based Care & AI

UnitedHealth Group Names Stephen Hemsley CEO as Andrew Witty Steps Down

UnitedHealth CEO Andrew Witty Steps Down, Stephen Hemsley Returns as CEO

Omada Health Files for IPO

Omada Health Files for IPO

Blue Cross Blue Shield of Massachusetts Launches "CloseKnit" Virtual-First Primary Care Option

Blue Cross Blue Shield of Massachusetts Launches “CloseKnit” Virtual-First Primary Care Option

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

Osteoboost Launches First FDA-Cleared Prescription Wearable Nationwide to Combat Low Bone Density

2019 MedTech Breakthrough Award Category Winners Announced

MedTech Breakthrough Announces 2025 MedTech Breakthrough Award Winners

Secondary Sidebar

Footer

Company

  • About Us
  • Advertise with Us
  • Reprints and Permissions
  • Submit An Op-Ed
  • Contact
  • Subscribe

Editorial Coverage

  • Opinion
  • Health IT
    • Care Coordination
    • EMR/EHR
    • Interoperability
    • Population Health Management
    • Revenue Cycle Management
  • Digital Health
    • Artificial Intelligence
    • Blockchain Tech
    • Precision Medicine
    • Telehealth
    • Wearables
  • Startups
  • Value-Based Care
    • Accountable Care
    • Medicare Advantage

Connect

Subscribe to HIT Consultant Media

Latest insightful articles delivered straight to your inbox weekly

Copyright © 2025. HIT Consultant Media. All Rights Reserved. Privacy Policy |